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Air traffic service providers have to make decisions regarding changes to
air traffic flow in the event of major weather disturbances and traffic
congestions to maintain safety of the system. The behavior of the air traffic
management system will be more predictableif consistent decisions are made
under similar traffic and weather conditions. Consistency of deciding on
control action depends on the weather and traffic conditions as well as
accuracy in predicting these conditions. Weather parameters (defined in
terms of forecast and actual weather and traffic conditions) on different days
can be used to categorize these into days with little decision consistency, days
with moderate decision consistency and days with high decision consistency.
Five years of traffic, weather and ground delay program decisions data at
major airports in the United States are used in the analysis. This paper
examines performance of different data mining methodsin the three regions
of decision consistency. Not surprisingly, data mining methods have the best
performance in the region of most decision consistency and have the poorest
performancein theregion of little decision consistency. In applicationswhere
data mining methods have differing performance in differing regions, it
would be more useful to characterize region specific performance instead of
characterizing performance by a single parameter. Finally, the results show
no significant variation in the performance of different data mining methods
for this particular problem. Thefact that different mining methods show no
significant variation also provides further confidence in the results of data
mining methods. This paper also discusses how prediction errors impact
regions of decision consistency.

I. Introduction

he continuous growth in the demand for air trangimn results in an imbalance between

airport capacity, airspace capacity and traffic dech Airport arrival rates and airport
departure rates are affected by weather conditibims.airspace capacity of a region depends on
the ability of the system to maintain safe sepamalietween aircraft in the region. The airspace
capacity is severely limited by inclement weath&imilarly, airport arrival rates and airport
departure rates are reduced in the presence oiveather. FAA has a national center called Air
Traffic Control System Command Center (ATCSCC) thaersees national traffic. Traffic
managers at Air Route Traffic Control Center (ART)G0llaborate with dispatchers at various
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Airlines’ Operations Ceter (AOC) to mitigate the dema-capacity imbalance caused
weather. The end result is the implementation aetof Traffic Flow Management (TFN
initiatives such as ground delay programs, reradigsories, flow metering, and ground stc

Data Mining is the automated process of analyzing large gletfata and then extractii
patterns in the data. Data mining tools are capablpredicting behaviors and future tren
allowing an organization to benefit from past exg@ece in making knowled«-driven decisions.

In recent years, a number of G-related studies using dataning algorithms hee appeared
in the literatur&®*®"®  Since GDP operations are largely developedcanded out with limitec
decision support tools in current operations, tepis for modeling the impact of GC
programs prior to operational implementation haeerb rsearched in recent years.?, a
decision support capability to predict Aircraft Al Rates (AAR) and to determine Grou
Delay Program (GDP) program rate and tion based on Terminal Aerodrome Forecast (T
weather forecast data using Support Vector Mac{®wM) algorithm, is described. The uses
Ensemble Bagging Decision Tree (BC SVM, or Neural Networks (NN) methods to prec
the airport capacity and GDparameters with weather and airport data aredotred ii"®
Despite the past work in this area, there are righed systematic studies seeking to eval
and predict whether a GDP operation is requiredhadrfor days having similar weather &
airport conditions.

Data with past information about traffic and weatbenditions as well as traffic managem
initiatives has been archived in ASPM and NTML tatses. However, such databases dc
provide information in a form that can be usedacidion making. Data ining algorithms hav:
the potential to develop associations between weegthtterns and the corresponding gro
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Figurel. (@) GDP causesand (b) Ratios of GDPsat major airports

delay program responses. If successful, they camdeel to improve and standardize T
decisions resulting in better management of trdfows on days with reliable weather foreca
The approach here seeks to develop a set of daiagrand machine learning models and aj
them to historical archives of weather observatiand TFM initiatives to determine the ext
to which the theoryan predict and explain the observed traffic flovadogors.

In this study, the major sources of data that wesed include: the National Trafi
Management Log (NTML) and Aviation System Perforcametrics (ASPM). The data us
was from the years 2006 to 2010. The NTML is aiadikystem developed by the FA/at is
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used to automate coordination, logging and comnatiimie of traffic management initiatives
the NAS. For the purpose of this initial studye BDP entries in NTML were used as input:
the data mining algorithms.

A brief overview of the remnder of the paper is as follows. Section 2 discugseund dela
programs. Section 3 provides a I-level overview of data mining techniques that w
employed in this study. Section 4 describes théhauwlogy used in the program includi
metrics anddata used in the study. Section 5 presents res8kstion 6 provides a conclusi
based on the results.

Il. Statisticsof Ground Delay Programs

The mission of the FAA's traffic managen system to balance traffic demand with sys
capacity is achieved through a variety of Traffi@adMgement Initiatives (TMI) instituted a
modified by traffic managers at the regional andiomal levels. The FAA developed t
National Traffic ManagemenlLog (NTML) to provide a single system for automa
coordination, logging, and communication of TMIsaighout the National Airspace Syste
Figures below show more detailed GDP event stegitom the dat

Low Ceilings: 40%

Figure2. Ratios of the counts between weather subcategories

Fig. 1bdisplays the ratios in percentagetween airport GDP counts and the total NAS C
counts for the top 8 airportdt shows that the most frequent demamagbacity imbalance
occurred at the airports in the northeast regiothefUnited States, such as the three New -
area airports (EWR, GA, and JFK), Philadelphia (PHL), and Boston Lodaternational
Airport (BOS). The major cause of Ground Delay Pangs is weather as demonstratec
Fig.1la The diverse weather subcategory causes are pedseaiFig. 2. The dominated weathe
causes folGDPs are different at different airports. For ex@mmwhile close to 90% low ceiling
due to marine stratus cause GDPs at SFO, wind atcdor about 50% of GDPs at the th
New York-area airports, and thunder storms are the majoceswf GDP at AT.
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As Newark international airport is an airport tlgts a very high number of ground delay
programs and that contributes significantly to oradil airspace delays, we initially focused this
study at this airport. ASPM is a FAA database ammbg airport specific data, such as
throughput and the weather impacting the airparourly values of wind speed, visibility,
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Figure3. Histogramsof IMC WITI and Wind WITI

ceiling, Instrument Meteorological Conditions (IMGcheduled arrivals and departures from
ASPM data were used to compute input variablebighgtudy.

IMC impacted traffic and wind impacted traffic awo parameters derived from traffic and
weather data. As weather impact on the natiaitapace depends on how many aircraft are
impacted by inclement weather, we are using the@samnetrics to capture the impact of weather
on traffic.  Wind impacted traffic at an airportasy defined as the number of arriving or
departing aircraft while wind speed is over 15 knotSimilarly, IMC impacted traffic at an
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airport was defined as the number of arriving opaténg aircraft while there are IMC
conditions. Fig. 3 shows histograms of IMC WITdanind WITI values over at EWR a period
of five years. Mean AAR and ADR at EWR during theriod of this study was 41. 26% of
days have IMC conditions for five hours or more 8086 of the days have average wind speed
of 10 knots or more.

Daily values of wind WITI and IMC WITI, wind speedisibility, and ceiling were computed
as daily average of hourly values. Values for ydadériation in visibility and ceiling are
computed as difference between daily maximum anly dainimum values of visibility and
ceiling. Daily weather and traffic signature wadmacterized with following parameters: wind
speed, variation in wind speed, visibility, vargatiin visibility, ceiling, variation in ceiling,
Instrument Meteorological Conditions (IMC), schestulrrivals, IMC impacted traffic and wind
impacted traffic.

Principle components analysis of these 10 varialolesd that the most relevant variables are
IMC impacted traffic and wind impacted traffic.

I11. DataMining Overview

In our study, we use three data mining methodserabe bagging decision trees (BDT),
neural network classifier and support vector mael{B\VM) learning algorithms. These models
were selected because decision surfaces modeldteby are very different from each other. As
we do not have direct knowledge of shape of detisiarface in the case of GDP decisions, it
would be good to use different data mining methtmdexamine if the actual surface is easier
modeled by one of these methods.

A. Ensemble Bagging Decision Tree Classifier

Decision tree learnifguses a decision tree as a predictive model thsdcaes input
variables with target values. Each internal noaleesponds to a condition on an input variable;
there are edges from the node to children for edidhe possible values of that input variable.
Each leaf node has a value of the target variaddeaated with it. This value is the predicted
value given the values of the input variables repnéed by the path from the root of the tree to
the leaf. Algorithm for creating decision treesrkgtop-down by selecting a condition on a
variable at each step that best splits the sdepnfd. Algorithm used in this study used a metric
called “Gini impurity.”  Gini impurity is a measerof how often a randomly chosen element
from the set would be incorrectly classified ifwere randomly classified according to the
distribution of classes in the subset. Another mmmly used measure is “information gain”
measure. Ensemble methods use multiple machineitgamodels to obtain better predictive
performance than what any of its individual conslitt members can produce. Bagging is an
ensemble method that uses random re-sampling ataset to construct models.

B. Neural Network Classifier
A feed-forward neural netwotlkconsists of input, hidden and output layers arabiges a

general framework for representing non-linear fiomal mapping between a set of input
variables and a set of output variables. The outpuat each layer is connected to the next layer
by modifiable weights represented by links betwtdenlayers. The weighted outputs from one
layer will go through nonlinear sigmoid functiors form the input to the neuron in the next
layer. A bias unit is connected to all neurons pkdbe neurons in the input layer. The back-
propagation algorithm based on minimizing the otigrwor using a gradient descent method is
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used for training neural networks. For a NN to hgeed generalization properties and to avoid
over-fitting, the training data should have 5 totib@es training cases as the weights in NN and it
should be statistically representative.

C. Support Vector Machine

A support vector machifie constructs a hyper-plane or set of hyper-planea high- or
infinite-dimensional space, which can be used fassification, regression, or other tasks. Its
robust performance with respect to limited, spansé noisy data is making it widely used in
many applications from protein function, and fa@xagnition, to text categorization for
classification and regression prediction. The SVMdel has also been utilized in airport
capacity classification prediction.

When used for binary classification, the SVM altjun separates a given set of two-class
training data by constructing a multidimensionalpéplane that optimally discriminates
between the two clusters. Although SVMs were oaliinproposed to solve linear classification
problems, they can be applied to non-linear degigioctions by using the so-called kernel
function trick. Adopting this kernel technique, SV&an be utilized to automatically realize a
non-linear mapping to a high dimensional space. Aiyper plane in the high dimensional space
corresponds to a non-linear decision boundary énitiput space. A widely used kernel is the
Gaussian radial basis function (RBF).

IV. Methodology

In some applications, different operators may w@ikierent control actions in the presence of
similar weather and traffic conditions. Sometimibg, same operator may take different control
actions in the presence of similar weather conastio The reasons for this may be various.
Inconsistency may be owing to differing objectivegcision-making styles, or training. The
degree of operator decision consistency variedffardnt regions of the state space. It can be
useful to understand the nature of decision incbescy.

Furthermore, the performance of these data miniathads will vary depending on the state
of the system as specified by the observations. alfilgy of machine learning depends on the
consistency of the decision-making process an@viadability of the training data in the various
regions of the input data state space. Anothdofamomplicating the analysis is lack of clear
criterion driving the control actions resulting different decisions for the same values of the
state space. Given the variability in the perforoeanf data mining methods, using a single
number to characterize predictive accuracy is efifhl. The paper discusses how to divide data
into regions with differing decision consistencydaeport performance of different data mining
methods in the different regions of decision caesisy.
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Figure4. Segmentation of datainto regions

We will also examine if there is variation in therfpormance of different data minit
methods.The general approach adopted in this learning aatiomwork involves the followin
steps.

1) Division of data into regions of differing decisiconsistenc

2) Comparison of performance three data mining methods in the regions of differ
decision consistency

3) Analysis of sensitivity odecision consistency regiotsweather prediction inaccurac

Table 1: Segmentation of Data into Multiple Reg

Region | Probability of GDF| Decision consistency| Decision Percent of da
occurrence . consistency
(Numerical)

(Qualitative)
R1 14 .86 High 24
R2 .23 g7 Medium | 09
R3 .38 .62 Low 17
R4 .61 .61 Low 16
R5 .82 .82 Medium | 18
R6 92 92 High 16
7
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V. Results

D. Regions of differing decision consistency

For the purpose of analysis, we divide the datasix regions as shown in fig. 4. Division is
based on the values of sum of wind WITI and MC WIRL is a region where the sum of MC
WITI and wind WITI is the lowest. R6 is a regiomere the sum is the highest.

Difficulty of deciding on control action depends the region of variable space. For example,
on clear weather days, most operators would no¢ lagy difficulty in concluding that there is
no need for weather-caused GDP. Similarly, on 8yréad weather day, most operators would
conclude that there is a need for weather-caused. GD

Table 1 shows segmentation of data into 6 regitmmending on the sum of Wind WITI and
MC WITI and the probability of GDP occurrence instinegion of data. Low is defined as [.50,
.66], medium is defined as [.67, .82] and high ened as [.83, 1.0]. The number shown in the
second column of the table is the percent of casssGDPs in the particular region of interest.
Decision consistency refers to percent of days winendecision was in agreement with the
majority decision for the region. Fig. 5 shows Gadeisions and weather conditions for all days
analyzed in this study. Each point in the plotresponds to a day with IMC and wind values
corresponding to it. The point is represented by ifxthere is no GDP on that day. It is
represented by “o” if there is a GDP on that daythe Fig. 5, three plots show the regions of
high, medium and low decision consistency. As avida the table 1 and Fig. 5, this value
depends on the region of variable space. For exantipé first row in table 1 corresponds to
mostly clear weather days. In this case, most opesrao not have any difficulty in concluding
that there is no need of weather-caused GDP.
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Medium decision consistency region
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Figure5. Differing Decision Consistency in Different Regions

On the other hand, the last row in the table cpoeds to days with the worst weather. In this
case, 92% of operators concluded that there ised néweather-caused GDP. If we examine
third row in the table, we find that about 38% @iecator chose to implement GDPs and 62%
chose not to. Operators probably need a decisippast system in the cases where there seem
to be divergence of control actions under the exache conditions. Given the divergent
characteristics of different regions, it would te=iul to examine the performance of data mining
methods in different regions of data space.
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We categorized the six regions as having low, nmadiu high level of decision consistency
and then compared performance of different methwlden data has these differing levels of
decision consistency.

We found that about 33% of days fall in the catggolr low decision consistency. About
27% fall in the category of moderate decision cstesicy and about 40% of days fall in the

Table 2: Data Mining Method Predictive Accuracy

Decision Consistency % data| Neural SVM Bagged
Network Decision Tree
Low 33 66% 67% 67%
Medium 27 79% 80% 78%
High 40 88% 89% 87%

category of high decision consistency. We alsd that performance of data mining methods is
better in the region of high decision consistenoyg & poorer in the region of low decision
consistency.

E. Performance of different methodsin the regions of differing decision consistency

Accuracy of these methods varies depending on megfi@ecision consistency. For example,
decision tree classifier had overall accuracy @68 the region of high decision consistency, an
accuracy of 78% in the region of medium decisionststency and an accuracy of 67% in the
region of low decision consistency. This is natpsising as data mining models can only be as
good as the data on which they are trained on.

Utility of data mining methods may vary in diffeteregions of decision consistency. There
is probably no need for data mining assistant systethe region of high decision consistency.
Data mining methods can be useful in the regionsm@fium and low decision consistency, but
their accuracy is the lowest in the region of loscidion consistency.

F. Relevant Inaccuraciesin Weather Predictions

A natural approach to determine whether weatheatigtien is inaccurate would be to use is
using an arbitrary threshold for difference betwpesdicted and actual weather parameters. For
example, if difference in predicted wind speed auwtiual wind speed is 5 knots or more,
prediction could be regarded as inaccurate. Howevkether wind speed is 0 or 5 may not
affect control decisions. In contrast, whether wisgked is 10 or 15 may influence GDP
decisions under certain conditions.
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Our definition attempts to capture inaccuraciesveather prediction that are likely to have
impact on control decisions. We create a decisiea predicting control decisions based on
historical METAR data. Then, we use this tree tedmt control decision first using available
METAAR data. Then, we use the same tree to premhotrol decisions using available TAF
data. If these two decisions are different, therregard the weather prediction to be inaccurate.
There were about 30% of days with significant weanticcuracies with this definition.

Table 3: Segmentation of Dayswith Accurate Weather Prediction

Region | Probability of GDR Decision consistency | Decision consistency| Percent of data
oceurrence (Numerical) (Qualitative)
R1 15 .85 High 26
R2 21 .79 Medium 07
R3 44 .56 Low 17
R4 .85 .85 High 17
R5 .83 .83 High 16
R6 .98 .98 High 17

Table 4: Segmentation of Dayswith I naccurate Weather Prediction

Region | Probability of GDR Decision consistency | Decision consistency| Percent of data
oceurrence (Numerical) (Qualitative)
R1 .33 .67 Medium 26
R2 A2 .56 Low 07
R3 A2 .58 Low 17
R4 .56 .56 Low 17
R5 .52 .52 Low 16
R6 .66 .66 Low 17

G. Sensitivity of decision consistency regionsto weather prediction accuracy

In this subsection, we examine the sensitivity etidion consistency regions to weather
prediction accuracy. To do so, we divide the datia days when weather prediction is accurate
and into days when weather prediction is not aceurBable 3 shows that differing region of

decision inconsistency exist even on days withemtrweather prediction. Table 4 shows that
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there is a very high level of decision uncertaioty the days when weather predictions are
inaccurate.

V1. Conclusion

Difficulty of deciding on control action depends tire region of variable space. Weather and
traffic signature on different days can be usedategorize these into days with little decision
consistency, days with moderate decision consigtand days with high decision consistency.
This paper reported performance of different daiaing methods in the three regions of
decision consistency. Not surprisingly, data ngnmethods have the best performance in the
region of high decision consistency and have thergsi performance in the region of low
decision consistency. In applications where dataingimethods have differing performance in
differing regions, it would be more useful to claesize region specific performance instead of
characterizing performance by a single parameter.

Also, there is probably not need for data miningisiant system in the region of high
decision consistency. Operators may find decisiopport systems to be most useful in the
regions of moderate or low decision consistencylsoAorganizations may want to examine
decision-making processes that are used in thegenseto see how much subjectivity exists.
Thus, it may be useful to segment data and ideméfyions of low and moderate decision
consistency.

Finally, we also found that there was not significaariation in the performance of different
data mining methods for this particular problenheTact that different mining methods show no
significant variation also provides further confide in the results of data mining methods.

We also found that differing region of decision sistency exist even on days with correct
weather prediction. On the other hand, therelmnalevel of decision consistency on the days
when weather predictions are inaccurate.
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